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Abstract

Monitoring the thermal environment and responses of indicator species is fundamental for understanding

and predicting ecological consequences of ongoing and future environmental changes. With the recent

development of miniaturized temperature sensors (e.g., iButtons), which can be incorporated into biomi-

metic loggers (e.g., robolimpets), it is possible to routinely obtain long-term estimates of body temperatures

of intertidal organisms. A crucial step in the assembly of these biomimetic devices involves removing the cir-

cuit board from an iButton, a process which is not simple and often results in damage to the electronics or

loss of calibration. In this study, we describe a simplified process to assemble biomimetic loggers, and use it

to build robobarnacles (mimicking tropical and subtropical barnacles of the genus Tetraclita). The process

involves copper-coating the stainless steel case of iButtons through an electroplating process, allowing solder

joints to be made to the surface casing, thus avoiding opening the iButton to make a connection with its cir-

cuit board. This approach makes the manufacturing process simpler, faster, and prevents calibration loss, but

is only suitable for species large enough to accommodate a complete iButton.

Introduction

Global climate change has been increasingly associated

with important alterations in marine ecosystems including

increases in species’ mortality due to heat stress (Jones et al.

2009), range shifts, local extinctions and invasions (Herbert et

al., 2003; Mieszkowska et al. 2006, 2014; Sousa et al. 2012),

and consequent changes in ecosystem function (Thompson

et al. 2002; Hawkins et al. 2008). In this context, monitoring

the thermal environment and the thermal responses of indi-

cator species is essential to understand and predict the ecolog-

ical consequences of these changes (Helmuth et al. 2006;

Mieszkowska et al. 2006). The intertidal zone is an excellent

model system to study the effects of global warming because

intertidal species have to cope with dynamic variation in

environment between terrestrial and marine conditions every

day, making them particularly sensitive to thermal stress (Hel-

muth et al. 2006; Hawkins et al. 2008, 2009). As most interti-

dal species are ectothermic, large variations in temperature

have a great influence on their physiology, growth rates,

reproductive output, and survival (Southward 1958; Hines

1978; Zwaan and Mathieu 1992; Roberts et al. 1997).

Although the body temperatures of ectotherms are strongly

affected by environmental temperatures, they are also influ-

enced by individual morphology, size, color, behaviour and

thermal capacity of body fluids (Porter and Gates, 1969; Por-

ter et al., 1973; Hertz et al. 1993; Helmuth, 1998). The body

temperatures of ectotherms are, therefore, often different

from the ambient air or substratum surface temperatures. In

the intertidal zone, many organisms display body tempera-

tures that are different from those measured in air or from

adjacent rock surfaces during low tides (Williams and Morritt

1995; Chan et al. 2006). As result, air and rock temperatures

are often poor predictors of body temperatures of intertidal

species (Helmuth and Hofmann 2001) and may not reflect

the actual physiological conditions of the organism.

In order to determine thermal stress levels, researchers

have started adopting in situ measurements of intertidal ani-

mal temperatures (e.g., barnacles and limpets, Lewis 1963;

Wolcott 1973; Williams and Morritt 1995; Fitzhenry et al.

2004; Chan et al. 2006). With the development of
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miniaturized temperature sensors and biomimetic loggers, it

has become possible to routinely obtain long-term tempera-

ture records closely matching the body temperatures of ecto-

therms. To have a good proxy of body temperature of

ecototherms, the biomimetic loggers should have similar

“body” sizes and thermal inertia to the studied animals. The

design of such biomimetic loggers for intertidal systems is

particularly challenging as the loggers must be waterproof,

robust and also small, given the small body size of most

intertidal animals (Fitzhenry et al. 2004).

In some earlier studies, Helmuth and Hofmann (2001)

sealed Onset Corporation temperature loggers with silicone or

epoxy plastic inside mussel shells to simulate in situ body tem-

perature of live mussels and relate this with the expression lev-

els of heat shock proteins 70 (HSP70). This approach revealed

that the levels HSP70 in mussels was closely related to the tem-

perature recorded from the ‘model mussels’ rather than varia-

tions in the air or water temperatures (Helmuth and Hofmann

2001). Robert and Thompson (2003) introduced the technique

for dehousing iButton sensors to produce smaller sized temper-

ature loggers for biomimetic studies. Lima and Wethey (2009)

adopted the techniques in Robert and Thompson (2003) and

designed robolimpets—autonomous devices that mimic real

limpets both visually and thermally—which have been success-

fully deployed along temperate Atlantic shores for long-term

temperature monitoring (Seabra et al. 2011).

Robolimpets are built around a small circuit board

(17.4 mm diameter) extracted from an iButton DS1922L log-

ger and powered by a BR1225 (3V) lithium battery. The

extraction of the circuit board involves using a rotary cutting

tool to remove the stainless steel housing of the DS1922L

iButton. The circuit board and battery are fitted into a limpet

Fig. 1. Robobarnacle assembly sequence. (A) DS1922L iButton. (B) Copper-coated iButton. (C) Copper-coated iButton with soldered wire-wrap wires
connected to two pieces of constantan wire. (D) Solder joints covered with a thin layer of Scotchcast 2130 Flame Retardant Compound to increase

their strength. (E) Shell of Tetraclita used for robobarnacle construction. (F) Epoxy resin sealing the opercular opening and the basal tubes of the shell.
(G) Tetraclita shell with the iButton inside and the constantan wires protruding through lateral holes, ready to be completely filled with Scotchcast.
(H) Schematic anatomy of a robobarnacle. (I) Example of a robolimpet (in a Patella vulgata shell) built using the proposed new method of copper-

coated iButtons.
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shell and protected from the marine environment by a

waterproofing resin. Two corrosion-proof constantan wires

protruding from the limpet shell are used for downloading

data and servicing the loggers on the shore (for more details

see Lima and Wethey 2009).

The process of dehousing an iButton is not simple (Robert

and Thompson 2003; Lima and Wethey 2009) and has sev-

eral disadvantages. First, depending on the experience of the

user, up to 25% of circuit boards are likely to be irreversibly

damaged, which is a considerable loss since each iButton

costs � e35. Second, it is very easy to momentarily discon-

nect the power from the circuit board while dehousing the

electronics, which causes the factory calibration to be lost.

Calibration coefficients can be recalculated and used to cor-

rect readings a posteriori (Lima et al. 2011), but this is a time-

consuming process. To address some of these concerns, in

this study we describe an alternative and more efficient

means of assembling biomimetic loggers that makes the

whole process simpler, faster, and prevents calibration losses.

Materials and methods

Design of biomimetic data loggers

Robobarnacles

Barnacles of the genus Tetraclita are commonly found

along tropical and subtropical intertidal ecosystems across

the world and are, therefore, good models for monitoring

the thermal stress of intertidal species in these regions (Chan

et al. 2007). Tetraclita shells can reach 40 mm in external

basal diameter, and those used for robobarnacle construction

should have an external basal diameter of at least 30 mm in

order to accommodate the DS1922L iButton (the same

model used for robolimpet production by Lima and Wethey

2009).

For this approach, the external case of the iButton was

electroplated two times—first with nickel and then with cop-

per—by a local electroplating company (at a cost of e1 per

iButton; Fig. 1A,B). The plastic O-ring which makes the con-

tact between the two halves of the iButton metal case was

covered with a thin film of nail varnish to protect it during

electroplating. Two wire-wrap wires (approximately 15 mm

in length) were soldered to the two terminals of the copper-

plated iButton case (Fig. 1C) and to two 1.6 mm diameter 3

3 mm long constantan wires which are resistant to salt-

water. The soldered junctions between the wire-wrap wires

and both the copper-plated iButton case and the constantan

wires were strengthened using a thin layer of Scotchcast

2130 (52131, a replacement product for 2130) Flame Retard-

ant Compound (3M, Fig. 1D). Both the basal part of the shell

of Tetraclita, which is composed of numerous air spaces

rather like a honeycomb, and the opercular opening (Fig.

1E) were sealed using household epoxy resin (3C’s model

805 epoxy resin, Taiwan, Fig. 1F) to improve overall struc-

tural integrity. Each assembled logger was then inserted into

a Tetraclita shell (Fig. 1G) while the constantan wires were

allowed to protrude through two holes drilled on the side of

the shell (Fig. 1G,H). Finally, the internal volume of the fully

assembled robobarnacle was completely waterproofed with

Scotchcast, allowing it to be deployed in the intertidal envi-

ronment (Fig. 1H).

On the shore, robobarnacles were attached to the rock

substrate using a thin layer of either 3C’s model 805 epoxy

resin (which hardens in 5 min after being thoroughly mixed)

or xA-788 Z-Spar Splash Zone Compound (West Marine Ltd,

California, U.S.A., which hardens in hours).

Robolimpets

To validate the methodology involving electroplating,

we tested robolimpets constructed using the new methodol-

ogy against robolimpets built according to Lima and

Wethey (2009; hereafter referred to as the “old design”). For

the new design, robolimpets were built using the same steps

detailed above for Tetraclita robobarnacles, but loggers were

instead inserted into shells of the limpet Patella vulgata.

Both old and new design robolimpets were built using

shells large enough to accommodate intact iButtons. Robo-

limpets were deployed on the shore using A-788 Z-Spar

Splash Zone Compound following the methods of Seabra

et al. (2011).

Field trials

Robobarnacles

Five robobarnacles were deployed adjacent (within 2 cm)

to live Tetraclita barnacles of a similar diameter (6 3 mm) at

Shen-Ao-Kang, NE Taiwan in April 2013 (for details of the

study site, see Chen et al. 2013). A small hole (� 1 mm diam-

eter) was carefully drilled through the shells of the live

Table 1. Hourly air temperature and solar irradiation obtained
from the Keelung weather station of Central Weather Bureau,
Taiwan (about 6 km from the study sites) during the sampling
periods on 16th April 2013 and 17th April 2013. No rainfall
occurred during the sampling periods

Time

Air temperature

(8C)

Solar irradiation

(MJ m22 h21)

16th Apr 2013

9:00 25.3 2.07

10:00 24.3 2.82

11:00 24.1 3.16

12:00 23.4 2.40

13:00 23.2 2.15

17th Apr 2013

11:00 28.0 2.53

12:00 29.2 2.45

13:00 29.5 1.43

14:00 29.3 1.20

15:00 29.1 1.16

16:00 28.2 0.93
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barnacles, (� 1 cm below the summit of the test), allowing a

thin thermocouple to be inserted through the shell to mea-

sure the mantle temperature of the barnacles using a digital

thermometer (CHY 502A, Taiwan, 6 0.18C).

Temperatures were recorded from the live barnacles and

logged by the robobarnacles at every 10 min from two pairs

from 9:30 to 12:50 on 16th April, and from the remaining

three pairs from 11:20 to 16:30 on 17th April (local time).

On 16th April, the weather was sunny (solar irradiation

ranged from 2.07 to 3.16 MJ m22 h21 and air temperature

from 238C to 258C during the sampling period, Table 1),

whereas on 17th April, the air temperature was higher, rang-

ing from 28.08C to 29.58C (Table 1).

Robolimpets

Three pairs of new and old design robolimpets were

deployed on south-facing rock faces at Moledo do Minho,

NW Portugal (41.848N, 8.878W). Loggers from each pair were

less than 10 cm apart, and all loggers were deployed in

equivalent microhabitats (i.e., with similar shore heights,

degrees of shading, exposure to wind and wave splash). Data

were collected continuously between September 2013 and

November 2014, at a sampling interval of 60 min and a reso-

lution of 0.58C.

Statistical analysis

We quantified the temperature differences between live bar-

nacles and adjacent robobarnacles based on the time series of

the five pairs of comparisons. Specifically, we derived five time

series of paired temperature differences between robobarnacles

and live barnacles and estimated the kernel density of the tem-

perature differences, pooling all of the time series data together.

We used the normal kernel, with a recommended bandwidth

(i.e., 0:9 �min ðr̂; IQR=1:34Þ � n̂20:2; Silverman 1986; Venables

and Ripley 2002; where r̂ is the standard deviation of data

points, IQR is the interquantile range, and n is data length) and

weight (i.e., equal weight of all data points). We then derived

the temperature difference associated with the peak of the ker-

nel density and bootstrapped to estimate the 95% confidence

intervals. The same procedure was used to evaluate differences

between temperatures recorded by robolimpets built using the

old and new designs. As temperatures collected by robobar-

nacles only comprised periods of aerial exposure, we discarded

all data points recorded by robolimpets during immersion.

Table 2. Summary statistics of temperature differences between pairs of live barnacles (live) and robobarnacles (robo)

Pair N

Mean temperature

differences between

robo and live (8C)

Root mean square

deviation (8C)

Min temperature

(8C) (live, robo)

Max temperature

(8C) (live, robo)

1 21 20.45 1.09 24.7, 24.0 29.2, 29.0

2 21 0.41 0.73 23.5, 24.5 28.0, 28.5

3 28 0.14 0.61 29.3, 29.5 35.6, 36.0

4 28 0.83 0.93 28.7, 29.4 35.3, 35.9

5 28 0.40 0.92 28.5, 29.3 36.0, 34.5

Total 126 0.15 0.86 — —

Fig. 2. (A) Scatterplot of robobarnacle vs. live barnacle temperatures for all pairs of robobarnacles and live barnacles. Diagonal line shows line of
equality. (B) The kernel density of the temperature differences (i.e., temperature of robobarnacles – temperature of live barnacles). Note the differen-

ces peaked at 0.698C, with the 95% confidence interval 5 (0.288C, 0.918C).
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Results and discussion

Temperature measurements on 16th and 17th April were

generally consistent between live barnacles and the robobar-

nacles, as the scatterplots for these pairs approximately fol-

lowed an isoline (Fig. 2A). The kernel density of the

temperature difference (i.e., temperature of robobarnacles –

temperature of live barnacles) peaked at 0.698C with the

95% confidence interval 5 (0.288C, 0.918C) (Fig. 2B). Also,

the minimum as well as the maximum temperature readings

were similar between the live vs. robobarnacles of each pair

(Table 2).

Temperatures obtained from robobarnacles were, there-

fore, very similar to those experienced by live barnacles, sug-

gesting that the proposed design can be used to estimate

body temperatures of individuals of Tetraclita species. In

some cases (pairs 2, 4, and 5), robobarnacle temperatures

were slightly (0.4–0.88C), but consistently, higher than those

registered in live animals (Table 2). Such differences may be

a result of very small scale differences in location, such as

variation in the specific heat capacity of Scotchcast as

compared to the living animals, or more likely the behaviour

of live barnacles under thermal stress, when they slightly

open their opercular valves, allowing some of the mantle

water to evaporate, thus reducing their body temperatures via

evaporative cooling (Chan et al. 2006). Robobarnacles lack

this ability, which may explain their slightly higher tempera-

tures during the hottest periods of the day. Still, overall tem-

perature deviations between the robobarnacles and live

barnacles is comparable to the values reported for robolimpets

using Lima and Wethey’s design (1.068C in Lima and Wethey

2009 and less than 1.28C in Lathlean et al. 2015). In addition,

temperatures recorded using robolimpets built using the elec-

troplating method very closely matched those recorded by

the old design robolimpets (bias of 20.238C with 95% confi-

dence interval 5 (20.288C, 20.218C); Fig. 3, Table 3). This fur-

ther supports the notion that the electroplating methodology

is valid and consistent with the thoroughly tested and field-

proven original design by Lima and Wethey (2009).

Compared to the present method, Lima and Wethey’s

(2009) design is able to mimic smaller specimens and has

Fig. 3. (A) Scatterplot of old vs. new design robolimpet temperatures for all pairs. Diagonal line shows line of equality. (B) The kernel density of the
temperature difference (i.e., temperature of old design robolimpets – temperature of new design robolimpets). Note the differences peaked at
20.238C, with the 95% confidence interval 5 (20.288C, 20.218C).

Table 3. Summary statistics of temperature differences between pairs of robolimpets assembled using the old and new designs.

Pair N

Mean temperature

differences between

new vs. old design

robolimpets (8C)

Root mean square

deviation (8C)

Min temperature

(8C) (old, new)

Max temperature

(8C) (old, new)

1 3287 0.16 1.60 6.6, 5.2 36.7, 38.7

2 2249 0.43 1.10 4.4, 3.6 42.4, 43.6

3 4082 20.24 1.58 4.5, 5.2 42.1, 38.2

Total 9618 0.05 1.49 — —
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the additional benefit of allowing the original iButton bat-

tery to be replaced by a larger-capacity battery. Conversely,

the major advantage of our new design is the ability to save

an appreciable amount of time by avoiding iButton disas-

sembly (and the risk of damage, and hence increased costs)

and the need to recalibrate loggers if power supply is lost

during manufacture (see Table 4). The robobarnacles

deployed for this project continued logging data for 1 year

while surviving several typhoons which impacted the

deployment site. During this time, � 15% of the robobar-

nacles deployed had their tests damaged or broken by wave

or loose boulder impact, and in some cases lost their exter-

nal constantan wires. Despite the external damage, in all

cases it was possible to extract the iButtons from the water-

proofing resin and recover the logged data in the laboratory,

and to recycle the recovered iButtons for use in new robobar-

nacles. Such flexibility is not possible in the design proposed

by Lima and Wethey (2009) as the integrity of the iButton is

not maintained during logger production, making it nearly

impossible to successfully extract the circuit board from the

resin once it is enclosed in the shell. Furthermore, the

revised methodology described here can be easily modified

to produce mimics of large individuals (> 25 mm shell

length) of limpets such as Patella vulgata, P. ulyssiponensis,

Cellana grata, C. testudinatus and C. nigrolineatus and mussels

such as Mytilus spp. (see Fig. 1I for an example of a robolim-

pet produced following the copper electroplating

methodology).

Overall, this new design is less expensive, easier to assem-

ble, more precise, and markedly more robust, suggesting it

should be used preferentially whenever the studied animal is

of sufficient size. The reduction in cost and the increased

likelihood of obtaining long datasets without gaps represents

a significant step forward for researchers designing and

maintaining continental-scale networks of temperature

sensors.

Conclusion

In this study, we described a simplified and reliable pro-

cess to assemble biomimetic loggers, and use it to build

robobarnacles (mimicking tropical and subtropical barnacles

of the genus Tetraclita) and robolimpets. Our approach

makes the manufacturing process simpler, faster, and pre-

vents calibration loss, but is only suitable for species large

enough to accommodate a complete iButton.
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